Test Cases

Moderator: Dr. Philip Beran

Bifurcation and Model Reduction Techniques for Large Multi-Disciplinary Systems University of Liverpool, UK, June 2008

Test Cases: Basic Concept

- Limited in number
 - Multiple investigations each
- Look to capture commonalities and focus attention on weaknesses in current approaches

 Create if not available
- Provide value to this group
 - Stimulate meaningful follow-on activity of a potentially archival nature
 - Develop generic problems that are relatively easy to interpret and communicate while being of targeted significance
 - Demonstrates shared interest
 - Think outside your discipline?

Outline

- Critique experiences at Air Force Research Laboratory from the standpoint of test cases (Day 1)
 - Model reduction techniques
 - Bifurcation and model reduction techniques
- Reflection (this evening)
- Small-group discussion (tomorrow)
- Large-group discussion (tomorrow)

Model Reduction

Full-order model (FOM)

Heinkenschloss, Sorensen, Fidkowski, Willcox (2008)

Model Reduction for Unsteady Flows

- **Objective**: Improve performance of flapping aircraft
- Approach (planned): Actuation optimization using ROMs
- Technology: Model reduction of velocity fields computed with point vortex methods; POD for data compression and Higher Order Spectra for nonlinear modal couplings
- Status: Identification of quadratic couplings for POD modes
- Emphasize time-periodicity (challenge for solvers?)

Bifurcation Techniques

Adapted from Heinkenschloss, Sorensen, Fidkowski, Willcox (2008)

Bifurcation Techniques (cont.)

 Capture critical behaviors in large parameter spaces

Bifurcation and Model Reduction Techniques

- Objective: Compute distributions of flutter speed: panel variability
- Approach: Geometrically nonlinear panels in supersonic flow
- Technology: Projection of linearized eigen-problem
- Status: Explored POD basis enrichment in 1-D; extending to 2-D
- Structural plates are reasonable test case candidates

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x},\lambda) \quad \dot{\mathbf{x}} = \mathbf{J}(\lambda)\mathbf{x} = \mathbf{L}_1\mathbf{x} + \lambda^{-1}\mathbf{L}_2\mathbf{x}$$

Estimate λ^* for uniform panel with POD

$$\mathbf{z}(t) \approx \mathbf{\Phi} \hat{\mathbf{z}}(t)$$

Solve bifurcation equations: $\mathfrak{J}(\mathbf{X}^*) = 0$

Solve sensitivity equations: $\mathfrak{T}_{\mathbf{X}}^* \Delta \mathbf{X} = -\mathfrak{T}$ with variations

